Product Code Database
Example Keywords: trousers -ipad $20-111
   » » Wiki: Water Content
Tag Wiki 'Water Content'.
Tag

Water content or moisture content is the quantity of contained in a material, such as (called ), rock, , , or . Water content is used in a wide range of scientific and technical areas. It is expressed as a ratio, which can range from 0 (completely dry) to the value of the materials' at saturation. It can be given on a volumetric or gravimetric (mass) basis.


Definitions
Volumetric water content, θ, is defined mathematically as:
\theta = \frac{V_w}{V_\text{wet}}
where V_w is the volume of water and V_\text{wet} = V_s + V_w + V_a is equal to the total volume of the wet material, i.e. of the sum of the volume of solid host material (e.g., soil particles, vegetation tissue) V_s, of water V_w, and of air V_a.

Gravimetric water content

(1969). 9780471511922, John Wiley & Sons, Inc..
is expressed by mass (weight) as follows:
u = \frac{m_w}{m_s}
where m_w is the mass of water and m_s is the mass of the solids.

For materials that change in volume with water content, such as , the gravimetric water content, u, is expressed in terms of the mass of water per unit mass of the moist specimen (before drying):

u' = \frac{m_{w}}{m_{\text{wet}}}
However, , and require the gravimetric moisture content to be expressed with respect to the sample's dry weight:
u'' = \frac{m_{w}}{m_{\text{dry}}}

And in , both u' and u'' are used and called respectively moisture content wet basis (MC) and moisture content (MC).

(2025). 9780123985309, Elsevier.

Values are often expressed as a percentage, i.e., .

To convert gravimetric water content to volumetric water content, multiply the gravimetric water content by the bulk SG of the material:

\theta = u \times SG.


Derived quantities
In and petroleum engineering the water saturation or degree of saturation, S_w, is defined as
S_w = \frac{V_w}{V_v} = \frac{V_w}{V \phi} = \frac{\theta}{\phi}
where \phi = V_v / V is the , in terms of the volume of void or pore space V_v and the total volume of the substance V. Values of Sw can range from 0 (dry) to 1 (saturated). In reality, Sw never reaches 0 or 1 - these are idealizations for engineering use.

The normalized water content, \Theta, (also called effective saturation or S_e) is a dimensionless value defined by van Genuchten as:

\Theta = \frac{\theta - \theta_r}{\theta_s-\theta_r}
where \theta is the volumetric water content; \theta_r is the residual water content, defined as the water content for which the gradient d\theta/dh becomes zero; and, \theta_s is the saturated water content, which is equivalent to porosity, \phi.


Measurement

Direct methods
Water content can be directly measured using a drying . The oven-dry method requires drying a sample (of soil, wood, etc.) in a special oven or kiln and checking the sample weight at regular time intervals. When the drying process is complete, the sample's weight is compared to its weight before drying, and the difference is used to calculate the sample's original moisture content.

Gravimetric water content, u, is calculated via the mass of water m_w:

m_w = m_{\text{wet}}-m_{\text{dry}}
where m_{\text{wet}} and m_{\text{dry}} are the of the sample before and after drying in the oven. This gives the numerator of u; the denominator is either m_{\text{wet}} or m_{\text{dry}} (resulting in u' or u", respectively), depending on the discipline.

On the other hand, volumetric water content, θ, is calculated

(2025). 9780130996954, Prentice-Hall, Inc..
via the volume of water V_w:
V_w = \frac{m_w}{\rho_w}
where \rho_w is the density of water. This gives the numerator of θ; the denominator, V_\text{wet}, is the total volume of the wet material, which is fixed by simply filling up a container of known volume (e.g., a ) when taking a sample.

For , the convention is to report moisture content on oven-dry basis (i.e. generally drying sample in an oven set at 105 deg Celsius for 24 hours or until it stops losing weight). In , this is an important concept.


Laboratory methods
Other methods that determine water content of a sample include chemical (for example the Karl Fischer titration), determining mass loss on heating (perhaps in the presence of an inert gas), or after . In the food industry the Dean-Stark method is also commonly used.

From the Annual Book of (American Society for Testing and Materials) Standards, the total evaporable moisture content in Aggregate (C 566) can be calculated with the formula:

p = \frac{W-D}{W}
where p is the fraction of total evaporable moisture content of sample, W is the mass of the original sample, and D is mass of dried sample.


Soil moisture measurement
In addition to the direct and laboratory methods above, the following options are available.


Geophysical methods
There are several methods available that can approximate in situ soil water content. These methods include: time-domain reflectometry (TDR), , frequency domain sensor, capacitance probe, amplitude domain reflectometry, electrical resistivity tomography, ground penetrating radar (GPR), and others that are sensitive to the physical properties of water . Geophysical sensors are often used to monitor soil moisture continuously in agricultural and scientific applications.


Satellite remote sensing method
Satellite microwave remote sensing is used to estimate soil moisture based on the large contrast between the dielectric properties of wet and dry soil. The microwave radiation is not sensitive to atmospheric variables, and can penetrate through clouds. Also, microwave signal can penetrate, to a certain extent, the vegetation canopy and retrieve information from ground surface. The data from microwave remote sensing satellites such as WindSat, AMSR-E, RADARSAT, ERS-1-2, Metop/ASCAT, and SMAP are used to estimate surface soil moisture.


Wood moisture measurement
In addition to the primary methods above, another method exists to measure the moisture content of wood: an electronic . Pin and pinless meters are the two main types of moisture meters.

Pin meters require driving two pins into the surface of the wood while making sure that the pins are aligned with the grain and not perpendicular to it. Pin meters provide moisture content readings by measuring the resistance in the electrical current between the two pins. The drier the wood, the more resistance to the electrical current, when measuring below the fiber saturation point of wood. Pin meters are generally preferred when there is no flat surface of the wood available to measure

Pinless meters emit an electromagnetic signal into the wood to provide readings of the wood's moisture content and are generally preferred when damage to the wood's surface is unacceptable or when a high volume of readings or greater ease of use is required.


Classification and uses
Moisture may be present as adsorbed moisture at internal surfaces and as capillary condensed water in small pores. At low relative humidities, moisture consists mainly of adsorbed water. At higher relative humidities, liquid water becomes more and more important, depending or not depending on the pore size can also be an influence of volume. In wood-based materials, however, almost all water is adsorbed at humidities below 98% RH.

In biological applications there can also be a distinction between physisorbed water and "free" water — the physisorbed water being that closely associated with and relatively difficult to remove from a biological material. The method used to determine water content may affect whether water present in this form is accounted for. For a better indication of "free" and "bound" water, the of a material should be considered.

Water molecules may also be present in materials closely associated with individual molecules, as "water of crystallization", or as water molecules which are static components of protein structure.


Earth and agricultural sciences
In , and agricultural sciences, water content has an important role for groundwater recharge, , and . Many recent scientific research efforts have aimed toward a predictive-understanding of water content over space and time. Observations have revealed generally that spatial variance in water content tends to increase as overall wetness increases in semiarid regions, to decrease as overall wetness increases in humid regions, and to peak under intermediate wetness conditions in temperate regions .

There are four standard water contents that are routinely measured and used, which are described in the following table:

Saturated water contentθs00.2–0.5Fully saturated soil, equivalent to effective porosity
θfc−330.1–0.35Soil moisture 2–3 days after a rain or irrigation
Permanent wilting pointθpwp or θwp−15000.01–0.25Minimum soil moisture at which a plant wilts
Residual water contentθr−∞0.001–0.1Remaining water at high tension

And lastly the available water content, θa, which is equivalent to:

θa ≡ θfc − θpwp
which can range between 0.1 in and 0.3 in .


Agriculture
When a soil becomes too dry, plant drops because the water is increasingly bound to the soil particles by suction. Below the plants are no longer able to extract water. At this point they wilt and cease transpiring altogether. Conditions where soil is too dry to maintain reliable plant growth is referred to as , and is a particular focus of management. Such conditions are common in and environments.

Some agriculture professionals are beginning to use environmental measurements such as soil moisture to schedule . This method is referred to as smart irrigation or soil cultivation.


Groundwater
In saturated , all available spaces are filled with water (volumetric water content = ). Above a , pore spaces have air in them too.

Most soils have a water content less than porosity, which is the definition of unsaturated conditions, and they make up the subject of hydrogeology. The of the is the dividing line between saturated and unsaturated conditions. Water content in the capillary fringe decreases with increasing distance above the surface. The flow of water through and unsaturated zone in soils often involves a process of fingering, resulting from Saffman–Taylor instability. This results mostly through processes and produces and unstable interface between saturated and unsaturated regions.

One of the main complications which arises in studying the vadose zone, is the fact that the unsaturated hydraulic conductivity is a function of the water content of the material. As a material dries out, the connected wet pathways through the media become smaller, the hydraulic conductivity decreasing with lower water content in a very non-linear fashion.

A water retention curve is the relationship between volumetric water content and the of the porous medium. It is characteristic for different types of porous medium. Due to , different wetting and drying curves may be distinguished.


In aggregates
Generally, an aggregate has four different moisture conditions. They are Oven-dry (OD), Air-dry (AD), Saturated surface dry (SSD) and damp (or wet). Oven-dry and Saturated surface dry can be achieved by experiments in laboratories, while Air-dry and damp (or wet) are aggregates' common conditions in nature.


Four Conditions
  • Oven-dry (OD) is defined as the condition of an aggregate where there is no moisture within any part of the aggregate. This condition can be achieved in a laboratory by heating the aggregate to 220 °F (105 °C) for a period of time.
  • Air-dry (AD) is defined as the condition of an aggregate in which there are some water or moisture in the pores of the aggregate, while the outer surfaces of it is dry. This is a natural condition of aggregates in summer or in dry regions. In this condition, an aggregate will absorb water from other materials added to the surface of it, which would possibly have some impact on some characters of the aggregate.
  • Saturated surface dry (SSD) is defined as the condition of an aggregate in which the surfaces of the particles are "dry" ( i.e., they will neither absorb any of the mixing water added; nor will they contribute any of their contained water to the mix), but the are saturated with water. In this condition aggregates will not affect the free water content of a composite material.

The water adsorption by mass (Am) is defined in terms of the mass of saturated-surface-dry (Mssd) sample and the mass of oven dried test sample (Mdry) by the formula:

A = \frac{M_{ssd}-M_{dry}}{M_{dry}}

  • Damp (or wet) is defined as the condition of an aggregate in which water is fully permeated the aggregate through the pores in it, and there is free water in excess of the SSD condition on its surfaces which will become part of the mixing water.


Application
Among these four moisture conditions of aggregates, saturated surface dry is the condition that has the most applications in laboratory experiments, research, and studies, especially those related to water absorption, composition ratio, or shrinkage tests in materials like concrete. For many related experiments, a saturated surface dry condition is a premise that must be realized before the experiment. In saturated surface dry conditions, the aggregate's water content is in a relatively stable and static situation where its environment would not affect it. Therefore, in experiments and tests where aggregates are in saturated surface dry condition, there would be fewer disrupting factors than in the other three conditions.


See also


Further reading
  • Wessel-Bothe, Weihermüller (2020): Field Measurement Methods in Soil Science. New practical guide to soil measurements explains the principles of operation of different moisture sensor types (independent of manufacturer), their accuracy, fields of application and how such sensors are installed, as well as subtleties of the data so obtained. Also deals with other crop-related soil parameters.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs